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Structure of the transient wall-friction law in 
one-dimensional models of laminar pipe flows 

By J. L. ACHARD A N D  G. M. LESPINARD 
Institut de M6canique de Grenoble, B.P. 63 X, 38041, Grenoble Cedex 

(Received 24 November 1980) 

The problem of describing an unsteady cylindrical pipe flow with one-dimensional 
equations is investigated, and an exact method for obtaining a closure relationship is 
proposed for the transient shear stress in a laminar flow submitted to an arbitrary 
transient pressure gradient. Extensive comparisons are given for a step or a harmonic 
pressure gradient between the approximate solution derived from this method, some 
results of the literature and exact solutions of the Navier-Stokes equations. 

1. Introduction 
The use of one-dimensional models with cross-section-averaged flow variables 

simplifies considerably the analysis of pipe flows for most engineering applications. 
A correct method for obtaining cross-section-averaged equations for a pipe flow (which 
applies as well to homogeneous fluid as to two-phase flows) can be found in Delhaye & 
Achard (1976). For the cases where the fluid is incompressible and the pipe a circular 
cylinder, the momentum and energy equations take the following form: 

where z is the axial co-ordinate, and I .  I represents the averaging operator in a cross- 
section normal to the unit vector n,. 

However, the drawback of such an approach lies in the need for closure relationships 
for the unknown terms of the averaged formulation in terms of the new state vari- 
ables: the mean axial velocity ( w (  = Iv .n,l and the mean temperature 151. The first 
equation requires knowledge of the average viscous stress 7, = 1 (n, .T) . n,l, the ratio of 
the exact momentum flux to the averaged one k, = 1w21/1w12, and the wall friction 
7 = -R-l (n, , T) . nz. The second one requires knowledge of the ratio of the exact heat 
flux to the averaged one k, = lw.TJ/lwl IT1 and the wall heat flux q = - R-lnW.q. 

Among these closure relationships, the two wall-exchange terms r and q are of the 
utmost importance and are generally written using the assumption of quasi-steady 
flow : 

and both friction factor Cf and heat-transfer coefficient h are determined from 
experiments where the flow is steady and ful ly  developed. However, these exchange 
laws are commonly used in one-dimensional models describing transient or non-fully 

T = L  2 P  c r l  w 2  1 2  Q =  h v I w - 1 5 1 )  (1.31, (1.4) 
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developed processes without paying much attention to  their limitations, which yields 
either inaccurate results or artificially unstable computations. 

The limitations of the quasi-steady assumption and of the resulting laws are in fact 
well known among researchers (see, for example, Nusselt 1910; Lambossy 1952; 
Perlmutter & Siege1 1961; Koshkin et al. 1970). However, a correct extension of the 
validity of such laws to transient cases has never been stated, except perhaps by Stein 
(1971). This extension involves much more than a simple refitting of the coefficients 
C, and h, and any correlation of those coefficients in typical unsteady cases (step, 
harmonic oscillations, etc.) in terms of independent variables, time or frequency, has 
no further importance than pointing out that  the quasi-steady wall laws cannot be 
applied to such cases. This is because the structure of the laws must be modified to 
allow the description ofan experiment with any time evolution of the control variables. 

Our purpose is to present an original method for extending the classical quasi-steady 
equations to transient flows. Starting from the time-dependent and local (two- 
dimensional with the hypothesis of a cylindrical flow) balance equations, we work out 
the conditions for which the averaged equations give the same result. These conditions 
bear precisely on the form of the unknown wall laws which are needed in the averaged 
equations. The proposed method involves no preliminary assumption on the structure 
of the laws, and it results in an exact relationship which can be solved either wit,h a 
high-frequency approximation or (which is more interesting for practical purposes) 
with a low-frequency approximation which exhibits several relaxation coefficients. 

The present paper illustrates the above method by applying i t  to the basic case of an 
isothermal laminar flow in a cylindrical tube and deriving the transient shear-stress 
law. The more general case of a turbulent flow could be considered as well, provided 
a local and analytically simple model for the mean unstationary velocity would be 
available. 

The heat-transfer case can be treated in a similar way. Work on this subject 
establishing a transient heat flux law is in progress. 

2. Transient wall-friction law for an isothermal laminar flow in a 
cylicdrical tube 

This type of flow has been known for a long time, and exact solutions exist in the 
literature for various time-dependent pressure gradients, for instance a step function 
at time t = 0 (Szymanski 1932) or a harmonic pressure gradient (Sex1 1930). 

2.1. The solution in terms of local variables 
The equation for the axial component of such a flow is obviously 

where the pressure gradient - ap/& is a given function of time G(t)  assumed zero for 
t < 0. Hence the initial condition is 

w = 0 for t = 0,  (2.2) 
and the boundary conditions are 

(i) no slip a t  t,he wall 
= 0 for r = R ;  
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(ii) axisymmet'ry with a tangential momentum balance on the axis 
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aw - -  - 0 for r = 0. 
ar (2.4) 

It will be useful to work with dimensionless equations: choosing R as a reference 
length, R2/v as a reference time, and denoting reference values of axial velocity and 
pressure gradient by W, and Go respectively. Equation (2.1) then takes the simple form 

provided W, and Go are related by 
R2G, 

P 
w,=-. 

Astraightforward method for obtaining the solution with any given G(t)  is to write the 
time Laplace transform of equation (2 .5 ) .  Using s as the dimensionless Laplace 
variable and an asterisk to denote Laplace transforms, the above equation is trans- 
formed into a Ressel equation of first kind and order zero. I ts  solution is 

A 
= H"(Y,  s)G*(s) ,  

where I, is the modified Bessel function of first kind and order zero. 
I n  the time domain, the solution is the convolution product 

w(r,  t )  = 1,' H ( r ,  t ' )  G(t  - t ' )d t ' ,  

(2.7) 

and-H, the original of H",  can be worked out simply since the exact solution w, for a 
step function is known; hence 

H ( r , t )  = - aw, (2.10) at 
with 

(2.1 1 )  

(aTz is the nt.h positive zero of the Bessel function J,). 

2.2. T h e  solution in terms of average variables 
The averaged equation, ( 1 .  l ) ,  has already been given. I n  a laminar flow r ,  is equal t o  
zero since the diagonal of tensor T contains only zeros. Moreover in the particular case 
of the Poiseuille flow the term a(k, 11~1 2 ) / a z  also reduces to zero. Finally, wit'h external 
forces assumed to be irrotational and their potential included in the pressure equation, 
(1.1) becomes, in its dimensionless form, 

where W stands for 1wI. 

dW 
- = G(t)  - 27, 
dt (2.12) 

10-2 
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The initial condition is the averaged form of (2.2), 

w = o  for t = 0 .  (2.13) 

Expressed in terms of average variables, the partial differential problem defined by 
(2.1) and the conditions (2.2), (2.3) and (2.4) reduces to an ordinary differential 
problem, completed by the closure relationship of r versus the only state variable W .  

As the solution of the averaged problem W ( t )  must be the average of the solution of 
the local problem Iw(r,t)l, we obtain after (2.9) 

W ( t )  = l H ( ~ , t ' ) /  G(t-t ' )dt '  so' 
and, since r ( t )  = - (auj/ar),=, is also related to G, 

~ ( t )  = - 1: - E.", [H( r ,  t')],=l G(t-  t ' )dt ' .  

(2.14) 

(2.15) 

Thus, we observe that the two time functions W ( t )  and r(t)  cannot be independent, 
since they are generated by a single forcing function G ( t ) ,  and that the elimination of 
G ( t )  between (2.14) and (2.16) will result in the relationship sought, r(  W ) .  This elimi- 
nation can easily be achieved in the image space of Laplace, since convolution products 
are transformed into algebraic relations. We obtain 

and after elimination of G*(s)  

(2.16) 

(2.17) 

(2.18) 

We note that this result has already been obtained by Ziellse ( 1968) although written 
in a less convenient form. However, he did not obtain from (2.18) all the practically 
applicable results. 

It is easy to verify that, if we use equation (2.18) when solving the averaged problem 
defined by (2.12) and (2.13) after a Laplace transform, we recover (2.16). Hence, the 
original of (2.18) is actually the exact relationship between r and W .  

Before coming back to the originals, let us give a physical interpretation of (2.18) 
with the help of well-known concepts of control theory. In (2.18), 2 ~ *  appears to result 
from s W* through the use of a transfer fmction 

So, if we insert 

2I@) H;(s)  = ___ 
s t  &i3) . 

2r* = H;sW* 

(2.19) 

(2.20) 

into the Laplace-transformed equation (2.12), we obtain an alternative form of (2.16), 

(2.21) 



I 
gradient 

Acceleration 

dW 
di 

I 
- 

which can be represented by the schematic diagram of figure 1. HT(s) appears in a 
feedback loop: this agrees with the regulation effect usually assigned to viscosity. 

The original of equation (2.20) is a convolution product 

Average 
velocity I 

S W 
- + 

- 

dW 
dt‘ 

1L 

Shear stress 

(2.22) 

in which H, of H,* can be obtained through the complex inversion forl11ulit. and t,lie 
calculus of residues : 

m 

H,(t) = L-l [Hf(s)] = 8 + 4 5 e-73 
n=l  

(yn is the nth positive zero of J2). 
Finally, the resulting relationship between r(t) and W ( t )  can be written 

dW r(t)  = 4 W + 2  5 1; exp[-y:Jt-t’)],dt’, 
n = l  dt 

(2.23) 

(2.24) 

but i t  is much too cumbersome to be useful for practical applications, so approxi- 
mations are needed even if only valid in limited frequency ranges. 

2.3. Modal approximation 

The Laplace transform of (2.24) is a series involving the yn: 

m i  

(2.25) 

The first approximation, when s+O (i.e. when t-tco or for very slowly varying 
motions), is obviously the quasi-steady approximation 

7 = 4w, (2.26) 

from which the classical value of the friction factor C, = 16/Re can be recovered. 
Higher-order approximations can be obtained by truncation of the series at any 

order N > 1 and, the faster the transients, the higher N must be. From a general 
point of view, it is obvious that, for a chosen value of N ,  and after multiplying both 
members of (2.25) by the appropriate denominator, sN will appear as a factor of T* 

and W*: this means that, in the time domain, an Nth-order approximation of (2.26) 
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4 1 2 3 N 
- - 1 3.8 x 

2 5.2 x lo-’ 5.4 x 10-4 - 
3 5.9 x 10-2 9.2 x 10-4 4.0 x 10-6 

TABLE 1 

gives an Nth-order differential equation. After a recurrence calculation of the 
coefficients, this equation can be written 

N d“7 N d“ w 
T +  2 v ~ G  = 4 W + 2  2 ( 2 + k ) 4 -  

k = l  k =  1 dtk ’ 
where a? is defined by 

A N  1 
II; 2 2  2 2  c7f = 

nl,n,, ..., nkYn, Yn,..-Ynk 

( 2 . 2 7 )  

( 2 . 2 8 )  

which means a summation performed over k indices combined without repetition 
among the N integer values 1 to  N .  

Equation ( 3 . 2 7 ) ,  together with the initial one-dimensional equation (3 .12)’  gives a 
differential system in r and W which can be solved for any transient process defined 
by a given G ( t )  : this being valid a t  any order N, we can state that equations ( 3 . 1 2 )  and 
( 3 . 2 7 )  give the general solution of any transient laminar flow in a cylindrical pipe. 

The major practical problem is obviously the computation of the numerical values 
of the coefficients a$ from the values of yn. These values can be found in Abramowitz & 
Stegun ( 1 9 7 0 )  with an accuracy of The first three approximations are listed in 
table 1. We notice 

(i) that the order of magnitude of af decreases rapidly when k increases. This 
confirms the expected strong influence of the very first derivatives and shows that the 
truncation a t  small orders (e.g. 2 or 3 )  would generally be sufficient. 

(ii) That for a given order N of the differential equation, the kth coefficient is a 
function of N .  This is hardly acceptable, and an ideal approximation would be to 
limit the influence of truncation to  the order of the differential equation only. This can 
be achieved by replacing af by its limit a k  when N + 00, and the identification between 
the series expansion of I.(s*) and the infinite product expansion of J,(isd) = -12(sb) 
provides a general expression for gk,  viz. 

0 
Y 

= 4 ” k ! ( k + 2 ) ! ‘  

The first values of k given by (2 .28’ )  are shown in table 2. 

(2 .28’ )  

~ ~~ 

k 1 2 3 

*k 8.33 x 2.60 x 4.34 x 1 0 - 5  

TABLE 2 

The order of magnitude of v1 is 10-l; so the first-order approximation of ( 2 . 2 5 ) ,  

( 2 . 2 9 )  
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applied to a periodic flow, is expected to bring relevant corrections to the quasi-steady 
approximation (3.26) for values of the dimensionless frequency within the approxi- 
mate range [0, S O ] .  I n  the same way, the order of magnitude of a2 is and so the 
second-order approximation of (2.25), 

(2.30) 

will introduce sufficient corrections up to w - 108, etc. 
Further computations will confirm these orders of magnitude and, in addition, show 

that the next approximations are not worth considering. Let us write the transfer 
function H*(s) which relates the average velocity W*(s)  to  the pressure gradient 
C*(s), using the three successive approximations (2.26), (2.29) and (2.30): 

1 
8+s ' 

H$(s )  = - 

1+a,s HT(s) = 
8 + ( 1 + 120-,) s + als2 ' 

1+a1S+~,s2 

8 + ( 1  + 120-,)8 + (a, + 16a2)s2 + G 2 S 2 '  
H:(S) = 

(2.31) 

(2.32) 

(2.33) 

We compare, within the range w E [ 1 0-l, 1 04] : 
(i) the exact amplitude characteristic of the frequency response IH(iw)[ with the 

(ii) the exact phase characteristic arg [H*(iw)] with the approximation arg [H:, ( iw) ]  

(iii) the relative errors 

approximations I H g  ( i w )  1 ( N  = 0,1,2; see figure 2 a )  ; 

(see figure 2b); 

for amplitudes (see figure 3a)  and 

arg [H%(iw)]  - arg [H*(iw)] 
%Y = arg [H*(iw)] 

for phases (see figure 3b). 
From the above results, we observe that the relative errors tend to zero a t  low 

frequencies, and that they become less than 5 yo for maximum values of Q given in 
table 3, which confirm very closely the values expected from the orders of magnitude 
of the coefficients Ck. 

Another observation may be more surprising, since the modal approximation is 
known to  be valid a t  low frequencies: the relative errors also tend to zero for large 
values of w because, despite very poor modelling of viscous effects, these effects 
themselves become negligible compared with inertial effects. 

Thus, we can come to the conclusion that the shear stress law obtained in (2.27) 
gives good results, except for an intermediate gap, in the whole range of frequencies. 
The lower limit of this interval increases with N ,  whereas the upper limit is almost 
insensitive to N ,  and the maximum error decreases when N increases. So, for any given 
value of B, it is theoretically possible to reduce this gap to zero by increasing N .  
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FIGURE 2. Modal approximation: (a) amplitude and ( 6 )  phase characteristics of the frequency 
response. __ , exact solution; - * *  - .., quasi-steady approximation (N = 0);  -- - --, 
first-order modal approximation (N = 1); * - . -, second-order modal approximation ( N  = 2).  

However, i t  must be stressed that an increase in N gives smaller and smaller improve- 
ments, and that high-order differential equations are not practically convenient. I n  
some cases the high-frequency approximation we present in 5 2.4 will give better 
results and in a more convenient way. 

2.4. High-frequency approximation 
In  the previous section, we have obtained the original H ( t )  of H*(s) using the complex 
inversion formula. An alternative method consists in expanding H*(s)  into a series of 
decreasing (fractional) powers of s and inverting this series term by term (Doetsh 
1961). From the series expansion of I,(s) for large values of s, we deduce: 

2 3 15 
HT(s) = -i+-+-+..., 

s p  s 4.4 
which inverts into 

(2.34) 

(2.35) 
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FIGURE 3. Modal approximation: relative errors in (a) amplitudes and (b )  phases. - .- - .., 
quasi-steady approximation ( N  = 0) ; - - - - , first-order modal approximation ( N  = 1); 
-.-  ., second-order modal approximation ( N  = 2). 

N CaN < 5 %  ChN < 5 %  

0 o < 2-8 < 10-4 
1 w < 10.1 < 4.2 
2 w < 28 w <  -18 

TABLE 3 

This series converges for any t =t= 0, and its first term gives the asymptotic behaviour of 
H, for small values of t  and high frequencies. Thus, according to (2.22), we can write 
the first-order approximation of the shear stress 

(2.36) 

It is interesting to notice that the same expression is obtained in a different way by 
Landau & Lifshitz (197 1) for the shear stress on a flat plate oscillating in its own plane 
within a fluid originally a t  rest. This is fairly obvious since, for high frequencies, the 
diffusion of vorticity extends in a layer which remains thin compared to the pipe 
diameter. On the other hand, equation (2.36) is very similar to the expression of the 
transient viscous drag on a spherical particle in creeping motion (Basset force). These 
analogies suggest that the total shear stress could be written as the sum of a steady 
term and a convolution product describing the transient development of the boundary 
layer (Tdtii & Chawla 1979). 
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FIGURE 4. First-order high-frequency approximation : ( a )  amplitude and (6) phase characteristics 
of the frequency response compared with tho exact solution. --, exact solution; - - - , high- 
froquency approximation. 

A detailed analysis of the frequency response can be made in the same way as for 
the modal approximation. Although successive approximations, involving an in- 
creasing number of terms, could be worked out easily, we shall limit ourselves to the 
first-order approximation, for which the general transfer function H; ( s )  can be written, 
according to (2.21),  

1 H;(s)  = - s 4 2si' 
(2.37) 

It is worth noticing that the zero-order approximation is no inore than H& = l/s, the 
transfer function of a frictionless system. 

Figures 4 (a ,  b )  give the comparison, within the range u E [ l O - l ,  lo4] of IHt(im)J and 
the exact amplitude (H*( iw) l ,  arg [H;( iu) ]  and the exact phase arg [H*(iw)] respec- 
tively. 

Figure 5 represents the relative errors on amplitudes and phases 

) H ; ( i ~ ) l -  IH*(iw)l 
E,,, = 

lH*(iw)l 
and 

arg IH;(iw)] - arg [H*( iw) ]  
' p h  = arg [ H * ( i o ) ]  
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Relative Relative 
Amplitudes error 7; Phases error yo 

- - Exact value 0.036GO - 68.73' 
Second-order modal 0.03724 + 2  - 64.68' - 6  
approximat ion 

approximation 
First-order high-froquoncy 0.03694 + 1  - 76.49' + 11 

TABLE 4. 

1 10 102 103 104 W 
FIGURE 5. First-order high-frequency approximation : relative errors in 

( a )  amplitudes and ( b )  phases. 

From these results we observe that (i) the relative error eah is less than 5 yo for w > 9, 
which is surprisingly good; (ii) the relative error is less than 5 yo for w > 39; (iii) the 
approximation (2.36) is quite poor for low frequencies. 

Practically, we conclude that amplitudes are reproduced, to  the nearest & 5 yo, by 
the first-order modal approximation for w 5 10 and by the first-order high-frequency 
approximation for w 2 9. But, as is well known, good accuracy is much more difficult 
t o  obtain for phases, a small gap remains between the second-order modal approxi- 
mation (w  ,< 18) and the first-order high-frequency approximation (w  2 39) if we keep 
the same accuracyof 5 yo. So, either a second-order high-frequency approximation has 
to be developed or a slight compromise in accuracy is admitted. According to the 
values shown in table 4, we recommend that the separation between both approxi- 
mations be chosen at  w = 20. 

3. An example of transient flows: the response to a step pressure gradient 
The purpose of the present section is to give an example of the time behaviour of 

the average velocity W(t )  and the shear-stress 7( t ) ,  to  compare the results of various 
approximations with the exact solution, and to make comments on some approxi- 
mations which are proposed in the literature. 

For a step pressure gradient, the exact solution is 
m e-a:t m e-azt 

W ( t )  = i - 4  2 4, 7 ( f )  = 4 - 2  2 - 2 .  
n=l an n = l  a n  
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FIGURE 6 .  Step pressure gradient: time evolution of (a) velocity and ( b )  shear stress. -, exact 
solution; * *  - *. -, quasi-steady approximation ; - __ - , first-order modal approximation. 

The chosen approximations are 
(i) the quasi-steady approximation (3.26)’ which gives 

W ( t )  = Q(l -e--Bt), ~ ( t )  = $ ( I  - e--Bt); (3.317 (3 .4 )  

(ii) the first-order modal approximation (2.29)’ the solution of which can be written 

W ( t )  = Q +Ee-c t+Pe-Dt ,  ~ ( t )  = &+E‘e-ct+Ir“e-Dt. (3.5)’ ( 3 . 6 )  

The coefficients in (3.5)’ ( 3 . 6 )  can be obtained from the four constants 

A = 6+- 1 ( =  12*02410), B = ( A’-- :j’( = 6 ~ 9 4 2 1 4 ) ~  
20.1 

C = A + B  ( =  18.96624)’ D = A - B  (=  5.08196) 

by means of the following formulae 

P ’ = 4 P + -  1 
B’ 

E ’ =  4 E - -  
B’ 

Figures 6 (a, b )  compare the velocities and shear stresses respectively, and show very 
clearly the interest of the modal approximation. 

Other empirical approximations have also been proposed in the literature: for 
instance Pham 85 Veteau (1977) write r in terms of W :  

dW 
dt ’ 

7 = 4 W + 0 * 1 3 5 -  ( 3 . 7 )  
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-arg [Hp* (io)l 

FIGURE 7. Empirical approximation (3.7): (a) amplitude and (b)  phase characteristics of the 
frequency response showing the wrong behaviour a t  high frequencies. -, exact solution ; 
- . -  ., approximation (3 .7) .  

where the numerical coefficient of the derivative has been calculated to fit the exact 
solution within the range of interest. Moreover, this approximation is the first-order 
representation of a Taylor-like expansion 

N d"W 
at" ' 7 = 4 w + 2 s n -  

which appears, for instance, in the work of Letelier &, Leutheusser (1978). Approxi- 
mations of this kind seem extremely attractive, since they do not introduce in the 
calculations an extra differential equation: for instance, substituting (3.7) into the 
first-order differential equation (2.12) gives 

dW 
(1+0*270)-+8W dt = G ( t ) ,  (3.9) 

where the extra transient viscous term increases the inertia. The drawback of such an 
assumption is clearly illustrated by the transfer function which relates, in the image 
space of T.,aplace, the average velocity W*(s) to  the pressure gradient G*(s): 

(3.10) 
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Figures 7 (a, b )  represent the amplitude and phase characteristics of H:(s) compared 
with the exact transfer function, and they show that a good empirical choice of the 
parameter allows this approximation t o  give good results a t  low frequencies, but that, 
for higher frequencies, the results cannot be correct since the system tends towards a 
pure inertial behaviour with a wrong value of the inertia. 

It is also important to  notice that such an approximation has no physical meaning 
when N > 1 .  This comes from expression (2.20) which states, without any assumption, 
that, in the feedback branch of the schematic diagram (figure 1)) the acceleration (or 
its image s W*(s) )  is the input and the shear stress is the output. Hence, any approxi- 
mation of the transfer function HT(s)  of this branch must comply with the elementary 
properties of a Laplace transform, and in particular tend towards zero whcn s + co 
(Takahashi, Rabins & Auslander 1972):  this is clearly not verified for (3.8),  the Laplace 
transform of which is 

4. Conclusions 
I n  this first part, we tried to  establish a fully correct extension to any transient 

process of laminar pipe flow of the well-known steady wall shear-stress law which 
relates linearly the shear stress to the instantaneous average velocity. 

A fundamental result due to  Zielke (1968) was recalled in a simple way. Strictly 
speaking, the extra tansient term which must be added to the steady-state relation- 
ship has to  take into account the whole history of the velocity from the very origin of 
the motion, As the resulting convolution product is very cumbersome to handle in 
practical problems, two approximation procedures are presented. 

The first one is valid for low-frequency cases, or large times in a transient process, 
and leads to a set of two ordinary, constant-coefficient, differential equations. In  the 
closure equation, relating the shear stress to the velocity, relaxation terms appear for 
the shear-stress as  well as fo r  the velocity. The order of this differential equation must be 
increased according to the maximum frequency f,,, involved in the process; but a 
complete study of the accuracies shows that the simple first-order differential equation 
(3.29) gives excellent results up to f,,, N 10v/2nR2 and that the second-order equation 
(3.30) is valid until f,,, N 20v/2nR2.  Moreover, these modal approximations remain 
physically consistent even for large frequencies, since they allow the system to have a 
purely inertial behaviour when f + co. 

The second procedure is concerned with high-frequency cases only, or the very first 
motion in the case of a fast transient. Since i t  comes from an asymptotic expansion 
when f + co, this approximation should by no means be applied to  low-frequency cases. 
However, i t  gives good results for fmin > 20v/2nR2 and satisfactory ones down to 

fmin > 10v/2nR2. The convolution product (2.36) expressing the shear stress in terms 
of the velocity is much simpler than in the general case. Although it is not impossible 
to approximate this integral by a differential relationship, the coefficients are no 
longer constants but involve successive powers of t-3,  and no attempt was made to 
calculate the limit value of the numerical constants. The reason being that the practical 
importance of the high-frequency approximation is much less than in the previous 
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case, since i t  is useless in most transient processes and restricted to  periodic motions 
with a fundamental frequency larger than the limit frequency fmin. 

The present study was limited to laminar flows and circular cylindrical pipes. A first 
extension to other cylindrical geometries can be done without any new fundamental 
problem whenever a set of eigenfunctions is available for the exact solution (in 
rectangular pipes for instance); but, should the computation be impossible, the relaxa- 
tion coefficients appearing in (2.29) or (2.30) could easily be obtained from a typical 
experiment. Clearly, a more interesting, and more difficult, extension would concern 
turbulent flows. It can be anticipated that two different ways could be followed. 

( a )  A simplified model could be used which would be analytically tractable. 
Although this direction does not seem to be very promising, for unstationary turbulent 
models are neither numerous nor reliable, an interesting attempt is reported by Ishii & 
Chawla (1979) who use a ‘penetration model’ to  establish a convolution-type transient 
correction of the shear stress. 

( b )  It could be postulated that the structure of the wall-shear stress law, stated for 
laminar flows only, can be extended to turbulent cases. In  fact, it is likely that the 
form of the low-frequency differential relationship is fairly general, and that the 
relaxation coefficients could be obtained from careful experiments. It must be stressed, 
however, that the linearity of this relationship would limit an identification attempt 
to small-amplitude pressure steps or oscillations around a given stationary flow. 
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